Closing Thu: 15.2 Closing Tue: 10.3, 15.3

Visual: <u>https://www.math3d.org/bkMaaYxF</u>

Draw the region and switch the order

easy integration $\overset{\nabla}{\circ}$

Polar

Given (r, θ)

1. Stand at origin facing the positive *x*-axis.

2.Rotate by θ .

pos. = ccw,

neg. = clockwise

3.Walk *r*-units in direction you are facing.

neg. = backward

Plot this point $(r, \theta) = (2, 3\pi/4)$ Give 3 other polar ways to get to this same points

$$(-2, -\pi/4) = (2, 3\pi/4)$$

 $(2, 3\pi/4 + 2000\pi)$

From trig we already know:

$$x = r \cos(\theta),$$
 $y = r \sin(\theta)$
 $\tan(\theta) = \frac{y}{x},$ $x^2 + y^2 = r^2$

Four Quick Exercises:

- 1. Describe all pts where r = 3. $\Theta = Anything$ <u>Circle W/radius 3</u>
- 2. Describe all pts where $\theta = \pi/4$. r = Anything

a line
$$\Rightarrow$$
 y=x

3. Describe all pts where $-\frac{\pi}{4} \le \theta \le \pi$ and $1 \le r \le 3$

numbers insted of functions!

, 2tt

4. Describe all pts where $0 \le \theta \le 2\pi$ and $0 \le r \le 2$

Plotting Polar Curves

Option 1: Try to convert to x and y. Then hope you recognize the curve.

Option 2: Plot points!

Start with 0, $\pi/2$, π , $3\pi/2$ (intercepts). For more detail do multiples of $\pi/6$ and $\pi/4$.

Example: Similar to things in 15.3 Convert to Polar:

$$(x-2)^2 + y^2 = 4$$

$$r^{2} - 4r\cos\theta = 0$$

$$\Rightarrow r = 4\cos\theta$$

Example: Like HW 10.3 Prob 7 Graph $r = 2(1 + \sin(\theta))$

θ	0	π/2	π	3π/2	2π
r	2	4	Ζ	0	

θ	π/6	π/4	π/3	2π/3	3π/4	5π/6
r						

Example: Like HW 15.3 Prob. 5 Graph "one loop" of the "rose" $r = 2\cos(3\theta)$

θ	0	π/2	π	3π/2	2π
r	Ζ	0	- 2	0	2

θ	π/6	π/4	π/3	2π/3	3π/4	5π/6
r	0		-2			

Example: Like 15.3 HW Prob 7 Graph the region inside the cardiod $r = 1 + \cos(\theta)$ and outside the circle

 $r = 3\cos(\theta)$

θ	0	π/2	π	3π/2	2π
r					

θ	π/6	π/4	π/3	2π/3	3π/4	5π/6
r						

